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A Critical Case for the Solvability of Stefan-like 
Problems *) 
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We consider a one-phase one-dimensional Stefan problem with general data with the aim to 
investigate some open questions on existence of classical solutions. We show how existence and 
nonexistence are discriminated by the behavior of the initial datum in the neighborhood of the 
starting point of the free boundary. 

1 Introduction 

An extensive literature has developed on the following free boundary 
problem: find {T, s, z }  such that 

(1.1) z, - zI = 0, in DT= {(x,t):O < x  c s ( t ) , o  < t < T) 

(1.2) 

(1.3) z(x,O) = h(x ) ,  0 < X  < b ,  

(1.4) z(0, t )  = f ( t ) ,  0 < t < T, 
(1.5) z ( s ( f ) , t )  = 0, 0 < t < T, 

s(0) = b > 0, 

(1.6) z,(s(t),t) = - s ( t ) ,  0 < t < T. 
We refer to  [l], Part ‘I, for the definition of a classical solution to 

(1 .l) - (1.6). We assume that the data h, f are bounded and piecewise continuous. 
It is well known that if h, f are nonnegative then a unique classical 

solution exists, irrespective of the value of lirn suph(x); moreover, ~ ( t )  

decreases to b as t + 0 not slower than t1’2 (cf. [2]). 
Existence and uniqueness of classical solutions when the sign of data is 

not specified have been proved in [l], Part 11, under the assumption I h(x)  I 
< const Ix - b ID for any B > 0. 

x-b -  

*) Work performed under the auspices of the Italian C.N.R., G.N.F.M. 
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In [3] a special case with h ( b )  < 0 is considered: namely, a constant 
ho > -1 is found such that if h ( b )  > ho, then the problem has a solution 
(Thm. 2). 

On the other hand, in [4], where (1.4) is replaced by z,(O,t) = 0, we 
proved that no solution can exist if h ( x )  < -1 in (0,b).  

The aim of the present paper is to show how the solvability of (1 .l) - (1.6) 
is critically related to the behavior of h ( x )  in a neighborhood of x = b, giving a 
nearly complete answer to the question of well-posedness of (1.1) - (1.6) in the 
classical sense. 

For a better interpretation of the results, the following alternative 
formulation of the problem can be useful. Define 

(1.7) g ( x )  = jdSjdY(h(Y) + 1) 

and note that the well known transformation 

b b  

x c  

leads from a solution {T, s, t } of (1.1) - (1.6) to a solution {T, s, u }  of the follow- 
ing problem 

(1.9) u, - ut = 1 ,  in DT, 

(1.10) s(0) = b ,  

(1.11) u(x ,O)  = g ( x ) ,  0 < x < 6, 

(1.12) u(0 . t )  = g(0) + lf(7)dr;  

(1.13) u ( s ( t ) , t )  = 0 ,  0 < f < T, 
(1.14) u, ( s ( t ) , f )  = 0,  0 < t < T. 

I 

0 < t < T ,  
0 

Problem (1.9) - (1.14) can be thought as the mathematical model of the 
diffusion of a substance in an absorbing medium: in this case u(x, t )  represents 
the concentration, and the free boundary x = s ( t )  delimitates the region where 
the substance is present. In particular this problem has been considered (cf. [lo]) 
in the study of the diffusion and consumption of oxygen in a living tissue. 

In the spirit of problem (1.9) - (1.14), it is conceivable that an important 
role in discriminating well-posed and ill-posed problems should be played by the 
initial concentration g(x ) .  

A first result is the following 

Theorem 1.1 (non-existence) Assume that for some u > 0 the following 
condition is satisfled, 

g ( x )  GO, for x ~ ( b  - u , b ) .  
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Then problem (1.1) - (1.6) has no solution. 
The p r  oo f will be given in Section 2. 

Because of the transformation (1 .8), the theorem is simply related to the 
fact that problem (1.9) - (1.14) only makes sense if the initial concentration is 
strictly positive. Actually, the condition imposed on the initial datum (here, as in 
the two following theorems) is restricted to hold in a left hand neighborhood of 
x = b, because we are interested in more general results and our well-posedness is 
always intended in a “local” sense. 

In view of the above reasoning, it can be conjectured that the condition 
b b  

x c  
(HI j ) ( h ( r ) + 1 ) d r d t > O  

for x in some left neighborhood of b is necessary and sufficient for the well 
posedness of (1.1) - (1.6) in a classical sense*). 

Actually, the existence and uniqueness theorems which we prove in this 
paper will require slightly stronger assumptions; but, roughly speaking, they 
mean that - as far as problem of diffusion-consumption is considered - the 
mathematical problem has a unique classical solution when it is related (at least 
in a neighborhood of the initial location of the free boundary) to a physically 
meaningful situation: i.e. when the initial concentration of the diffusing 
substance is positive. 

Theorem 1.2 (uniqueness) Assume 

(Hl) thereexistsa>Osuchthath(x) 2 - l , h ( x )  + - 1  in (b - a , b ) .  

Then problem (1 .I) - (1.6) has a t  most one solution. 
The p r o  o f is found in Section 2. 

Concerning uniqueness we have the following theorem. 

Section 3 to  6 are devoted to the proof of the following theorem. 

Theorem 1.3 (existence) Assume 

(H2) 
Then problem (1 . l )  - (1.6) possesses a (unique) classical solution. 

dependence lemma; in Sec. 4 we prove existence in the special case 

(H3) 

these results will be used in Sec. 5 to get existence for a model problem in which 
lim h (x )  = - 1 ,  while Sec. 6 is the final approach to  the general case: the main 

there exists a > Osuch that h ( x )  > - 1 in (b - a, 6 )  . 

The sketch of the p roof  is as follows: in Sec. 3 we prove a monotone 

lim infh(x) > - 1  ; 
x+b- 

x-b-  

*) In [S], where problem (1.9) - (1.14) is considered with (1.12) replaced by u,(O, 1 )  = 0, condition 
(H) is assumed to hold for all x E (0 ,b)  (together with additional requirements such as h < 0 )  for 
proving existence in a weaker sense. 
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tool will be the construction of approximating solutions solving approximating 
free boundary problems, using the results of Sec. 5 to provide barriers as 
solutions of model problems. In the last part an important role is played by the 
convexity of the free boundary in the model problem. 

2 Proof of Theorems 1.1 and 1.2 

(I) P r o o f  of Thm. 1 .l .  Suppose that there exists a classical solution ( T , s , E }  of 
(1 . l )  - (1.6) and consider the related solution {T, s, u }  of (1.9) - (1.14). 

From (1.9) and (1.11) it follows that the assumption g(x) Q 0 in 
(b - a, b )  implies that for some t^ E (0, T )  and some 2 E (b - a, 6 )  

(2.1) u(2 , t )  C O ,  ~ E ( o , ~ ^ I ,  

and s ( t )  > 2, t E (O,i]. 
Hence, the strong maximum principle (see e.g. Thms. 4 and 5, Chap. 2 of 

[6]) applied to the domain 2 < x < s( t ) ,  0 c t Q ?along with Thm. 14, Chap. 2 
of [6] leads to the conclusion u,(s(t),t) > 0, I E (O,;], contradicting (1.14). This 
completes the proof of Thm. 1 . l .  

(11) P r o o f  of Thm. 1.2. Given a solution {T,s ,z}  to (1.1)-(1.6). for any 
to E (0.7‘) we denote by y ( t o )  the spatial coordinate of the right-most point in 
DT n ((x, t ) :  1 = to)  where z = - 1; if no such point exists we set y ( t o )  = 0. In 
this way a curve x = y ( t )  is defined and, owing to (Hl), y ( 0  +) Q b - Q. By D + 

we denote the domain y ( t )  < x < s ( t ) ,  0 < t < T. 
Now, let {Ti, si, q}, i = 1, 2, be two solutions and consider the respective 

curves x = y i ( t )  and domains D:. i = 1,2. From yi(0)  < b - Q it follows that 
a t > 0 can be found such that D = 0;’ n DZ+ n {(x, t ) :  t < 1‘) is nonvoid, 
connected and has a parabolic boundary. 

Passing to the associated solutions {Ti,si, ui}  to (1.9) - (1.14), from (1.8) 
we find ui > 0 and u ; . , ~  > 0 in 0:. Therefore in B we can consider the difference 
u1 - u2 and apply the argument displayed in the proof of Thm. 3.1 of [4] to show 
that the two solutions coincide. 

3 A comparison lemma 

In the following lemma {q , s i , z i } ,  i = 1,2  denote two solutions of 
problem (1.1)- (1.6) with respective data bi > 0, h,(x),f;(t). The functions gi(x) 
and ui (x, t )  are defined via (1.7) and (1.8) respectively. 

Lemma 3.1 I f  for some constants to, XI,  satisfying 

O < t o Q m i n ( T 1 , T 2 ) ,  O Q x ’ < x ” < m i n ( b l , b 2 )  

the conditions (3.1) through (3.6) are valid 

(3.1) bl < b2, 

(3.2) gl(x) Q s ~ ( x )  G x Q bi , 
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(3.3) 92b)  z 0 , x" < x < b2, 

(3.4) q ( t )  > x " ,  0 < t < t o ,  

(3.5) u, (x f f , t )  2 0 ,  

(3.6) u l ( x f , t )  g u 2 ( x ' , t ) ,  o < t < t, 
then 

(3.7) 31 ( t )  < S 2 0 )  I 

and t = to .  

P r o o f .  Let us suppose that for some I*, 0 < t* Q < we havesl (t*) = s2(t *) and 
s,(t) < s2( t )  for 0 s t c t*. 

w, - w, = 0, 

w(x, 0) 2 0, 
w@', t )  2 0, 0 < t < t * ,  from (3.6), 

0 < t < t= sup{t:O < t < to,sz(t) > x f f } ,  

0 < 1 < to  - 

Then the difference w(x, t )  = u2(x, t )  - u1 (x, t )  is such that 

x f  < x < s1(2) , 0 < t < t * ,  

x' < x < bl , from (3.1), (3.2), 

moreover 

W ( S ] ( t ) , t )  > 0, 0 < t < t * ,  W ( S , ( t * ) , t * )  = 0, 

since u2(sI ( t ) ,  I )  > 0 for 0 < t < t * (recall that u2 + 0, because g2 = 0 would 
imply nonexistence of .(T2,s2,z2}: see Thm. 1.1). 

Therefore w(x, t )  attains its minimum at x = s1 (t*),  t = t*. However, 
this contradicts the obvious condition w,(sl(t*), t*) = 0 (recall (1.14) and the 
already quoted theorems of [6 ] ) .  Thus, s2( t )  > sl(t) in [ O , f i ,  and (3.4) yields 
t' = to,  concluding the proof of the lemma. 

R e m a r k  3.1. In the particular case x r  = x f f  - - 0, conditions (3.2)-(3.6) are 
implied by 

hi(x) < h2(x) ,  fi(f) < f 2 ( t I t  and h ~ ( x ) , f 2 ( t )  Z - 1  

and Lemma 2.1 provides an a priori monotone dependence criterium. 

Remark  3.2. Lemma 3.1 remains valid if (3.1) is replaced by bl = b2, provided 
that the inequality sl(t) < s 2 ( t )  is known to be true in some neighborhood of 
t = 0 (e.g. if Sl (0) < &(O), when such derivatives exist). 

4 Existence under assumption (H3) 

Assuming (H3), two constants k < 1 and xo E (0,b) can be chosen such 
that 

(4.1) h & ) >  -k, x o < x < b .  
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Consider the function 2- (x, t )  solving 

x > o ,  r > O ,  Tz;;-z; = O v  

min(O,h(x)), 0 < x  < b ,  (4.2) 1 2- (x, 0) = [ 
0, b > x ,  

Owing to (4.1), T‘ > 0 can be found such that 

(4.3) Z - ( ~ o , t )  2 - k ,  0 < t < T ’ .  

For any constant c consider the functions 

(4.4) S(t ;c) = c - A ?‘I2, 

(4.5) ~ ( x , t ; c )  = K ( I  + erf[(x - c ) / (2 t1” )~ /e r f (~ /2 ) ) ,  
where A is the unique solution of the equation 

(4.6) n’/’(A/2)exp(A2/4)[1 - erf(A/2)] = k 
and 

(4.7) K = -k/[l - l/erf(A/Z)J. 

The pair S, Z solves the Stefan problem 

z,-z, = o ,  x < S ( r ) ,  O < t ,  

S(0;c) = c ,  
(4.8) Z(X,O+;C) = - k ,  x < c ,  

Z(S(t) , t ;c)  = 0 ,  O < t ,  1 Z,(S(t),t;c) = - S ( t ; c ) ,  0 < t .  

Fix uo E (xo, b )  and define 

(4.9) To = sup(t:O < t < T’, Z(xo,t;ao) < Z-(Xo,t)). 

For any c 2 a. we have 

(4.10) Z(xo,t;c) < Z - ( ~ o , t ) ,  0 < t < To. 

Now we construct a sequence of approximating solutions. We consider 

n = 1,2,.. . 
two sequences {un) ,  [b,} C (uo,b) ,  tending monotonically to b and such that 

(4.11) a, < b , ,  a,+l < b,, 
(such sequences can be constructed very easily). Finally, we define 

b, - b,-l 2 k(a, - U n - l ) ,  
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It is known that every problem (1 .l) - (1.6) with data s, (0) = b,, z,, (x, 0)  
= h,,(x), z,(O,t) = f ( t )  has a unique classical solution (T,,,s,,,z,,} (see [ll, 
Part I). 

We shall derive several properties of these approximating solutions to 
prove their convergence to a solution of (1 .l) - (1.6). 
Property 1 For any n = 1,2,. . . and To as defined in (4.9) 

(4.13) T,, 2 To 
holds true. 

P r o  o f . From the maximum principle we get 

(4.14) z,(x,t)  > Z-(x ,  t ) ,  0 < x < s, , ( t ) ,  0 c t < T,, . 
Hence, recalling (4.10) we have 

(4.15) z,(xo,t) > Z(xo,r ;ao) ,  

compare s,(l) and S(t;ao):  

(4.16) s,,(t) > S(t;ao) 2 x 0 ,  

0 < t < min(T,, To). 

Owing to (4.3) and (4.15) we can use Lemma 3.1 with x' = x'' = xo to 

0 6 f < min(T,,, To). 
Thus we can conclude that for any n 

(4.17) z , (x , t )  > - k ,  xo c x < s, , ( t ) ,  0 < t < min(T,,, To). 
Recalling Lemma 2.4 of [4] and Thm. 8 of [l], Part I, the inequality 

T,, 2 To follows. 

Property 2 For any n = 1,2,. . . 
(4.18) s,+l(t> > s,,(t), 0 < t 6 To. 
P r o o f .  This inequality is an immediate consequence of Lemma 3.1 with x' = 0, 
x" = X O :  actually, using (4.11) and (4.12) one finds 

b" bn bn+l bn+l 

5 d t  S [hnO,) + 11 d~ < S dS I thn+i(y)  + lldy, 
x c  X c 
n = 1,2 ,..., 0 < x  < 6 , .  

Property 3 For any n = 1,2,. . . 
(4.19) s,,(t) > S ( t ; c ) ,  
(4.20) z,(xo,t) > Z ( x o , t ; c ) ,  0 < t  c To, fora l lc  > a o .  

Pro  o f . The first inequality is again a consequence of Lemma 3.1, when c 2 a. 
and of (4.4) when c C ao; (4.20) follows from (4.10), (4.13) and (4.14). 

Property 4 Suppose for  some n and some ?E (0, To) there is a value c such that 

(4.21) s,,(?) = S(?;C) ,  

0 < t < To, forallc < b , ,  
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and 

(4.22) b, < c , 
then 

< S ( t ; c ) ,  
> S( t ; c ) ,  

0 Q t < r, 
r< t < To. 

(4.23) 

P r o o f .  From (4.21), (4.22) if follows that there is tl < ?such that 

S n ( t l )  = S( l1;~)  and sn(t) < S ( t ; c )  for0  Q t < tl . 
First we remark that the difference s,(t) - S ( t ;  c) must change sign across t = tl:  
this follows from (4.20). yielding 

(4.24) Zn(X,tl) > Z ( x , t l ; c ) ,  ~0 < X  < s n ( t l )  

and from standard arguments based on the strong maximum principle. 
Therefore starting from t = 1, we can apply Lemma 3.1 (modified in the 

sense of Remark 3.2) to get s,(t) > S( t ; c )  for tl c t Q To (takex' = x" = xo). 
The conclusion is that no more than one intersection can occur in (0, To), i.e. 
(4.23). 

Property 5 For any t* E (0, To) either lims,(t) = S ( t ; b )  for 0 < t Q t*, or there 
is an no such that f o r  n > no 

(4.25) z,(x, t* )  2 Z(X, t*;s,(t*) + At* ' / ' ) ,  

(4.26) zn(x, t*) < Y(x, t*)  , 0 Q x < s,(t*), 
where Y is the solution of the heat equation vanishing on x = S(t;s, ( t * )  
+ A t *l") and assuming the value 

(4.27) Yo = max(0, sup h(x), sup f ( t ) )  

on x = 0 and on t = 0. 

P r o o f .  Fix t* E (O,To) and recall (4.18). Setting c = a, in (4.19) and letting 
n -, 03, weget 

(4.28) lims,(t*) 2 S ( t * ; b ) .  

If the equality sign holds, then lims,(t) must coincide with S ( t ; b )  for all 
t E [ O , t * ] ,  otherwise a contradiction to Property 4 could be found, since s,(O) 
< S(0 ,b ) .  

On the other hand, if Iims,(t*) > S( f* ;b ) ,  for n greater than some no 
s,(f *) > S ( t  *; b ) ,  implying s, (t*) + A I*'/' > b > b, . Consequently, the curve 
x = S(t ;s , ( t * )  + At*"')  has its (unique) intersection with x = s,(t) at t = t* 
(see again Property 4). At this point (4.25), (4.26) are easy consequences of the 
maximum principle. 

We are now in position to prove the following existence theorem. 

xo ,< x < ~ , ( t * ) ,  

xe(0.6) f do, r,, 
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Theorem 4.1 Under (H3) problem (1.1) - (1.6) has a (unique) classical solution. 

P r o o f .  Let Yo be defined by (4.27). Consider the pair (So,Zo) solving the Stefan 
problem for the heat equation with data So(0) = b, Zo(O,t) = Yo,Zo(x, 0 )  = Yo. 
It is immediately seen that 

(4.29) s,( t )  < so(t), o G t < T,, n = 1,2,. . . . 
In view of (4.29) and from Property 2 the limit 

(4.30) s ( t )  = lims,(t), 

exists. On the other hand, Property 5 yields the estimate 

(4.31) I in(t)I  < Ct-1’2, 

with C depending basically on k and on Yo. Thus the limit function s ( t )  is (non- 
uniformly) Lipschitz continuous in (0, To] and the existence proof is concluded 
by standard arguments (see e.g. [7]). 

0 < t < To 

0 < f < To, 

5 Model problems 

In order to complete the proof of Thm. 1.3 we shall need some 
comparison solutions playing a role similar to the functions S,Z used in the 
preceding section. 

Let x* E (0, b ) ,  B > 0,  r > 1 be given constants such that B(d - x*)‘ C 1 .  
For any c > b define 

- 1  + B ( b  - x ) ~ ,  x * < x < b  
- 1  + (X - b ) / ( c  - b ) ,  b C x < c (5.1) h,(x) = 

For x* C c < b, h,(x) will be defined according to the first of (5.1). Let 
us look for global classical solutions to the following free boundary problems 

(5.2) z , (x , t ;c)  - z , ( x , ~ ; c )  = 0, 

(5.3) s(0;c) = c ,  

(5.4) z(x,O;c)  = h, (x ) ,  x * < x < c ,  

(5 .5 )  z , (x* , t ;c )  = 0,  t > O ,  

(5.6) z ( s ( f ; c ) , t ; c )  = 0,  t > O ,  

(5.7) z x ( s ( t ; c ) , t ; c )  = - S ( t ; c ) ,  c > 0 .  

D* = { (x , t ) :x*  < X  < s ( t ; c ) , t  > 0 } ,  

Local existence for any c # b is a consequence of Thm. 4.1. Existence for 
all t > 0 follows from the condition 

5 h,(x)dx + c > 0, 
C 

X*  

using the techniques of [4]. Moreover s E C”(R+) (see e.g. [3]). 



A Critical Case for the Solvability of Stefan-like Problems 93 

The following monotone dependence result 

(5.8) ~1 C ~2 * s(t ;cl) C S ( t  ;cZ), t 2 0 - 
can be deduced duplicating the proof of Lemma 3.1 with x ’  = x“ = x*, t = to 
= + 00 and (3.6) replaced by ulJ(x*,  t )  = g;(x*) ,  U ~ ~ ( X * ,  t )  = gi (x * ) .  

For the time being the condition c1 ,c2 # b is tacitly assumed in (5 .8) ;  
however this exception will be dropped as a consequence of Lemma 5.2 below. 

We shall investigate.problem (5.2) - (5.7) in the three cases c c b, c = 6, 
c > b. 

Lemma 5.1 Let x* c c < b. Then 

(i) S’(t;c) > 0 ;  

(ii) 

P r o o f .  To prove (i), we state the following facts, mainly based on the maximum 
principle (we omit the arguments of s, when unambiguous). 

(a) I t isz,(s, t ;c)>O,t  > O  and limz,(s,t;c)= + m .  

(b) 

(c) 

(d) 

for  any t’ > 0, IS(t’;c) [ i s  bounded independently of c. 

I -0  

There exists a f > 0 such that z,(x*, t ; c )  < 0 for 0 < t c f, z,(x*, f;c) 
= 0. 
There is a unique curve y1 originating from (GO), where z, = 0, and a 
unique curve y2 originating from (x*,O), where z, = 0. 
y1 and y2 have their unique intersection in (x*, F). 

Now, consider the part of D* (defined in (5.2)) lying above yl. In this 
open set z,, z ,  > 0 and u = z,/z, is defined and positive. The level curves of v 
which originate from points of the free boundary are directed upwards and go to 
infinity. Then (i) follows from the arguments of [8] (or [9], see Lemma 3.2). 

Clearly, (i) implies that for any fixed t ’ > ‘0 the straight line connecting 
the points (b,O) and ( s ( t ’ ;c ) , t?  lies to  the right of x = s ( f ; c )  for 0 C t C t’. 
Moreover, its slope decreases as c increases, because of (5.8). This provides a 
very simple tool to construct barriers for z at (s(t ’ ;c), t?. Hence (ii) is proved. 

As an immediate consequence of Lemma 5.1 we have the following 
existence result for a model problem whose initial datum has the value - 1  at 
x = b.  

Lemma 5.2 Problem (5.2)-(5.7) with c = b has a unique classical solution 
existing globally. Moreover S’(t; b )  > 0. 

P r oo f . Uniqueness foilows from Theorem 1.2. Existence is an easy consequence 
of (5.8) and (ii) of Lemma 5.1 (recall also the trivial estimates(t;c) < b, c C 6 ) .  
Convexity can be proved as above. 

Next, we have 

Lemma 5.3 Let c > b. Then: 
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(i) 

(ii) 

for any t’ > 0, I S ( f ; c )  I is bounded independently of c; 

for anypoint (2, f i ,  t> 0, 2 > s(<b) ,  there exists a E > bsuch that s(< Z) - = x. 

P r o o f .  In this case, the curve y1 (see point (c) of the proof of Lemma 
5.1) originates from (b,O) instead of (GO). Thus, the arguments of [9] can be 
adapted (see in particular Theorem 3.3, (iv)) to conclude that a t ,  > 0 exists such 
that 

J ( t ; c )  < 0 ,  

S ( t ; c )  > 0. 

0 < t < t c ,  

t, < t .  

On the other hand, i(0,c) = (b - c ) - ’ ,  tends to - 00 as c tends to b, yielding 

(5.9) lim tc = 0 .  

From (5.9), once t‘ > 0 is fixed we can find co such that 

c-b+ 

t ,  < t ’ /2  , for c E (b, co) . 
Therefore, a barrier for z at (s(t‘,c),t’) can be constructed by solving the 

heat equation in a domain bounded on its right hand side by a polygonal 
x = &(t)  defined by: 

O < t < t ‘ / 2 ,  
t ‘ /2  < t < t ’ .  U t )  = c + 2(t - t ’ /2)  * [ s ( t ‘ , c )  - c ] / t ’  , r ’ 

Since i, > 2 b ( t ’ , b )  - c o } / t ’ ,  a uniform bound on i ( t ’ ; c )  is obtained 
independently of c < co. When c 2 co the same result can be proved as in [l ,I]. 
This concludes the proof of (i). By the way, we note that s ( t ; c )  tends to s ( t ; b )  
uniformly in any compact time interval not only as c + b- ,  as proved in Lemma 
5.2, but also for c -.) bf. 

To prove (ii), we remark that from (5.2)-(5.7) the following integral 
relationship is easily found to hold: 

b $(I% 

s(?;c) = ( 3 ~  - b ) / 2  - [l - B(b - x)‘]dx - 

Hence, letting c 4 +a, s cannot remain bounded, since t is bounded. 
Moreover, s ( t  ; c )  is seen to depend continuously on c for c > b : this ensues from 
Thm. 5 of [l], Part I, and from the convergence of s ( t ; c )  to s ( t ;b) ,  recalled 
above. 

J‘ Z(X, c ~ ) d x .  
X’ X*  

Remark 5.1. The results of this section remain true if the function h,(x) 
coincides in the interval x* < x < b with a function i ( x )  E C2[x*, b ]  such that 
i ( b )  = - l , i ‘ ( b )  = 0,z” > Oforx* < x  < b, andi(x*) < 0 .  
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6 Proof of Theorem 1.3 

Under assumption (H2) it is possible to find h' as in Rem. 5.1 in such a 
way that 

(6.1) h ( x )  2 i ( x ) ,  x* < x < b .  

Let (b,) C (x*, b )  be a sequence converging monotonically to b and 
consider the solutions {F,, S,, Z,) of problem (1 .l) - (1.6) with b replaced by b, in 
(1.2) and (1.3). Their existence and uniqueness is ensured by (6.1) and Thm. 4.1. 

(see 
Sec. 5 ) ,  we define 

Recalling the definitions of 2- (x, t )  (see (4.2)) and of z(x, t ;  b,) 

(6.2) T' = sup{t:Z-(x*,t) >z(x*, t ;bi)) .  

The inequalities 

(6.3) -1 < z ( x * , t ; ~ ) < Z - ( x * , t ) < Z , ( x * , t ) ,  O < t  <min(T',F,,) 

are easily verified for any c > b l .  Thus, Lemma 3.1 can be applied (x' = x'' 
= x * )  to conclude that, for any c E (b, , b,,), 

(6.4) s ( t ; c )  < S , ( t ) ,  0 c t < min(T',F,,), 

whence the uniform estimate 

(6.5) F,, 2 T' , n = 1,2,. . ., 
follows from the same arguments used in proving Property 1, Sec. 4. 

As a consequence of Lemma 3.1: 

So(t)  > S,+,(t)  > S,(t) ,  

A result similar to Property 4, Sec. 4 can be proved in the same way, 

(6.6) 

where So(t) is the function appearing in (4.28). 

using (6.3): if for some F E  (0, T? and some c > b, 

(6.7) in(?) = s ( ~ c ) ,  

then 

0 < t < T ' ,  n = 1,2,. . ., 

S,(f) < s ( t ; c ) ,  0 < t < t, 
(6.8) [ 

S,,(t) > s ( r ; c ) ,  tc t < T'. 

Finally, fix f* E (O,T?. From (6.4) we deduce that S ( t )  E limS,(t) 
2 ~ ( t ;  b);  hence, if S ( t * )  = s(t*;b),  then s( t )  = s ( t ;b )  for 0 < t < t* (since 
otherwise the implication (6.7) = (6.8) would be violated for c = b and n large 
enough). 

It remains to consider the case s(t *) > s(t *; b) ,  i.e. S,(t *) > s(t *, 6 )  for 
n > no, large enough. Fix n > no and consider the curve x = s(t ; c * )  such that 
s ( t * ; c * )  = S n ( f * )  (see Lemma 5.3.. (ii)). 
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Since such curve lies to the right of x = rT, (t ), upper and lower bounds for 
$,(t *) (independent of n and possibly diverging for t * + O f )  are easily obtained 
recalling Lemma 5.3 (i), which permits the construction of simple barriers (as we 
did in proving (4.26)). At this point, the last step of the proof is standard. 
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